Linköping University Post Print Simulation study of the filamentation of counter-streaming beams of the electrons and positrons in plasmas

نویسندگان

  • Mark E Dieckmann
  • P K Shukla
  • M E Dieckmann
  • L Stenflo
چکیده

The filamentation instability driven by two spatially uniform and counterstreaming beams of charged particles in plasmas is modelled by a particle-in-cell (PIC) simulation. Each beam consists of the electrons and positrons. The four species are equally dense and they have the same temperature. The one-dimensional simulation direction is orthogonal to the beam velocity vector. The magnetic field grows spontaneously and rearranges the particles in space, such that the distributions of the electrons of one beam and the positrons of the second beam match. The simulation demonstrates that as a result no electrostatic field is generated by the magnetic field through its magnetic pressure gradient prior to its saturation. This electrostatic field would be repulsive at the centres of the filaments and limit the maximum charge and current density. The filaments of electrons and positrons in this simulation reach higher charge and current densities than in one with no positrons. The oscillations of the magnetic field strength induced by the magnetically trapped particles result in an oscillatory magnetic pressure gradient force. The latter interplays with the statistical fluctuations in the particle density and it probably enforces a charge separation, by which electrostatic waves grow after the filamentation instability has saturated. PACS numbers: 52.40.Mj,52.27.Ep,52.65.Rr Numerical studies of the electron-positron filamentation instability in 1D 2

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compressive and rarefactive dust-ion acoustic solitary waves in four components ‎quantum plasma with dust-charge variation

Based on quantum hydrodynamics theory (QHD), the propagation of nonlinear quantum dust-ion acoustic (QDIA) solitary waves in a ‎collision-less, unmagnetized four component quantum plasma consisting of electrons, positrons, ions and stationary negatively charged ‎dust grains with dust charge variation is investigated using reductive perturbation method. The charging current to the dust grains ca...

متن کامل

Modulational instability of dust ion acoustic waves in astrophysical dusty plasmas with non thermal electrons

  Propagation of dust ion acoustic waves in plasmas composed of nonthermal distributed electrons and stationary dust particles is investigated. Nonlinear Schrdinger equation is derived to describe small amplitude waves, using the reduction perturbation technique. Modulation instability of dust ion acoustic waves is analysed for this system. Parametric investigation indicates that growth rate of...

متن کامل

Evaluation of Electron Contamination in Cancer Treatment with Megavoltage Photon Beams: Monte Carlo Study

Background: Megavoltage beams used in radiotherapy are contaminated with secondary electrons. Different parts of linac head and air above patient act as a source of this contamination. This contamination can increase damage to skin and subcutaneous tissue during radiotherapy. Monte Carlo simulation is an accurate method for dose calculation in medical dosimetry and has an important role in opt...

متن کامل

Large amplitude dust ion acoustic solitons: considering dust polarity and nonextensive electrons

The characteristics of arbitrary amplitude dust ion acoustic solitary waves (DIASWs) are studied in unmagnetized dusty plasmas whose constituents are cold uid ions, nonextensive electrons and stationary negative/positive dust particles. The pseudopotential approach has been used to investigate the structure of localized waves. It is found that, solitary waves exist in a definite interval for th...

متن کامل

PIC simulation study of the interaction between a relativistically moving leptonic micro-cloud and ambient electrons

Context. The jets of compact accreting objects are composed of electrons and a mixture of positrons and ions. These outflows impinge on the interstellar or intergalactic medium and both plasmas interact via collisionless processes. Filamentation (beam-Weibel) instabilities give rise to the growth of strong electromagnetic fields. These fields thermalize the interpenetrating plasmas. Aims. Hithe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009